Foxc Transcription Factors Directly Regulate Dll4 and Hey2 Expression by Interacting with the VEGF-Notch Signaling Pathways in Endothelial Cells
نویسندگان
چکیده
BACKGROUND Recent studies have shown that in the developing embryo, arterial and venous identity is established by genetic mechanisms before circulation begins. Vascular endothelial growth factor (VEGF) signaling and its downstream Notch pathway play critical roles in arterial cell fate determination. We have recently shown that Foxc1 and Foxc2, two closely related Fox transcription factors, are essential for arterial cell specification during development by directly inducing the transcription of Delta-like 4 (Dll4), a ligand for Notch receptors. However, the basic mechanisms whereby the VEGF and Notch signaling pathways control transcriptional regulation of arterial-specific genes have yet to be elucidated. METHODOLOGIES/PRINCIPAL FINDINGS In the current study, we examined whether and how Foxc transcription factors are involved in VEGF and Notch signaling in induction of Dll4 as well as the Notch target gene Hey2 in endothelial cells. We found that Foxc1 and Foxc2 directly activate the Hey2 promoter via Foxc binding elements. Significantly, Foxc2 physically and functionally interacts with a Notch transcriptional activation complex containing Su(H) and Notch intracellular domain to induce Hey2 promoter activity. Moreover, activation of the Dll4 and Hey2 promoters is induced by VEGF in conjunction with either Foxc1 or Foxc2 more than by either component alone. VEGF-activated PI3K and ERK intracellular pathways modulate the transcriptional activity of Foxc proteins in Dll4 and Hey2 induction. CONCLUSIONS/SIGNIFICANCE Our new findings demonstrate that Foxc transcriptional factors interact with VEGF and Notch signaling to regulate arterial gene expression in multiple steps of the VEGF-Dll4-Notch-Hey2 signaling pathway.
منابع مشابه
Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function.
Delta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are current...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function
Delta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)–A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are current...
متن کاملSpecification of arterial, venous, and lymphatic endothelial cells during embryonic development.
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induce...
متن کاملLoss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformati...
متن کاملSerum Induces Transcription of Hey1 and Hey2 Genes by Alk1 but Not Notch Signaling in Endothelial Cells
The transcriptional repressors Hey1 and Hey2 are primary target genes of Notch signaling in the cardiovascular system and induction of Hey gene expression is often interpreted as activation of Notch signaling. Here we report that treatment of primary human endothelial cells with serum or fresh growth medium led to a strong wave of Hey1 and Hey2 transcription lasting for approximately three hour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008